1 LoRa技術
1.1 簡介
LoRa是LPWAN(Low Power Wide Area Net work,低功耗廣域網)通信技術中的一種,是美國Semtech公司研發的一種基于擴頻技術的超遠距離無線傳輸技術。LoRa技術顛覆了過去通信技術領域中有關遠距離與低功耗的傳統認知。設計者采用LoRa技術完成數據通信可以兼顧遠距離與低功耗的各自優點,并由于LoRa技術傳輸距離遠,其可以大大節省額外的中繼開銷,使得系統部署簡單,傳輸效率較高。目前,LoRa技術主要在ISM(Industrial Scientific Medical,工業科學醫療)頻段運行,主要包括433、868、915MHz等。
LoRa技術將擴頻調制技術(Spread Spectrum Modulation,SSFM)和循環冗余碼校驗技術(Cyclic Redundancy Check,CRC)相結合,實現通信信號的調制解調。相對于頻移監控技術(Frequency Shift Keying,FSK),LoRa技術在擴大無線通訊鏈路覆蓋范圍的同時,又提高了系統的魯棒性。所以LoRa技術具有較強的抗干擾性,設計者通過調整擴頻因子,以及帶寬和編碼率,就可以對LoRa網絡進行優化。
1.2特點
(1)靈敏度可達-148dBm,發射功率可達22dBm;
(2)傳輸距離上限可達15km,建筑物密集區可覆蓋2km左右的通信范圍,空曠地帶覆蓋范圍可達10km;
(3)接收是功耗低至10mA,睡眠電流為200nA,可使用電池供電,長時間工作;
(4)數據傳輸速率的范圍是0.3kbps到50kbps,其可通過速率自適應技術動態調整數據傳輸速率,以均衡功耗和傳輸距離;
(5)使用基于信號傳輸時間的測距技術進行定位,其精度可達5米。
1.3 LoRa網絡構成
LoRa網絡構成如圖1所示,由傳感器節點、網關、中心服務器和移動服務組成。傳感器節點與網關之間通過LoRa技術進行通信,網關與中心服務器之間可以采用有線通信方式,也可以采用4G/5G等無線通信方式,移動服務通過Internet訪問中心服務器。

圖1 LoRa網絡構成
2 數據網關的硬件實現
2.1 總體結構
數據網關硬件設計的總體結構如圖2所示,由LoRa射頻電路、微控制器、以太網控制器和以太網接口電路組成。LoRa射頻電路主芯片采用Semtech公司的SX1268IMLTRT,用于通過無線方式采集遠端的傳感器數據;微控制器電路采用ST公司的低功耗微控制器STM32L053R8T6用于處理接收到的傳感器數據,并進行分析和存儲;以太網電路采用WIZnet公司的W5500,W5500內部集成全硬件TCP/IP協議棧并自帶MAC和PHY電路,使用便捷、穩定可靠;以太網接口電路采用HanRun公司的HR91105A,其內部集成網絡變壓器,并具有很強的EMI表現。

圖2 數據網關硬件設計的總體結構
2.2 LoRa射頻電路
LoRa射頻電路主芯片采用Semtech公司的LoRa收發芯片SX1268,其內部結構圖如圖3所示。其內部集成了低噪放大器(LNA),在LoRa調制下,接收靈敏度上限可達-148dBm;同時集成了功率放大器(PA),其發射功率上限可達+22dBm。SX1268具有2種調制方式,分別為FSK和LoRa;2種供電方式,分別為低壓差現行穩壓器(LDO)和DC-DC電壓轉換器,當其工作在DC-DC方式下,其接收低電流信號可達4.2mA,可以實現實際意義的低功耗。SX1268通過SPI接口與微控制器進行數據交換。

圖3 SX1268內部結構圖
LoRa射頻電路如圖4所示,SX1268工作在內部DC-DC供電方式下,由于SX1268為半雙工工作方式,所以電路中采用視頻模擬開關PE4259進行射頻電路的切換。PE4259有2種工作方式,1是單引腳控制,其實現方法是第6腳接電源,如第4腳接高電平,則將RFC切換給RF1;如第4腳接電平,則將RFC切換給RF2。PE4259的第2種工作方式是第6腳給低電平,第4腳給高電平,則將RFC切換給RF1;第6腳給高電平,第4腳給低電平,則將RFC切換給RF2。SX1268的DIO2引腳為多功能引腳,可將其功能配置為收發控制,這樣DIO2直接與PE4259的第4腳相連即可。微控制器控制PE4259的第6腳,其功能是天線開關(ATN_SW),當第6腳給高電平,打開天線,此時SX1268可通過DIO2直接控制射頻收發;當第6腳給低電平時,關閉天線,以達到降低功耗的目的。

圖4 LoRa射頻電路
2.3 微控制器電路
微控制器電路用于接收LoRa射頻電路采集的傳感器數據,并進行分析、存儲,并將其轉換為專用格式通過以太網電路傳遞給中心服務器。微控制器電路核心芯片選擇ST公司的超低功耗單片機STM32L053R8T6,其有7種低功耗模式,分別為:Sleep mode(睡眠模式)、Low-power run mode(低功耗運行模式)、Low-power sleep mode(低功耗睡眠模式)、Stop mode with RTC(帶有RTC的停止模式)、Stop mode without RTC(不帶RTC的停止模式)、Standby mode with RTC(帶有RTC的旁路模式)、Standby mode without RTC(不帶RTC的旁路模式),其具體功耗數值見表1。

表1 STM32L053R8T6低功耗模式電流
STM32L053R8T6的Stop模式分為2種,一種是啟動內部RTC(實時時鐘)電路,另一種是不啟動內部RTC。當芯片運行于Stop模式是,具有喚醒功能的外設,會在條件滿足時,啟動HISRC時鐘,并且任何外部中斷都可以在3.5us的時間內喚醒期間,處理器可以進入中斷處理程序,進行相應的處理,所以論文所設計的網關微控制器在低功耗時,運行于Stop模式。
微控制器電路如圖5所示,主芯片STM32L053R8T6的時鐘,由外部晶振CSTCE12M0G55Z-R0提供,其頻率為12MHz;電阻R1下拉,用于選擇啟動模式為內部Flash。為了增強系統的可靠性,對于復位電路除采用阻容復位外,額外焊接外部看門狗復位芯片TPS3823-33DBVR。STM32L053R8T6通過SPI接口與LoRa射頻電路和以太網電路通信。
2.4 以太網電路
W5500是一款全硬件TCP/IP嵌入式以太網控制器,內部集成硬件TCP/IP協議棧,10/100M自適應的MAC層和PHY層,可使電路通過單芯片擴展以太網硬件鏈接。W5500使用SPI接口與微控制器進行通信,支持TCP、UDP、IPv4、ICMP、ARP、IGMP和PPPoE協議,內部集成32字節buffer用于處理和解析以太網數據包。W5500使用Socket進行以太網通訊設計,內部可同時使用8個硬件Socket進行通訊。
以太網電路如圖6所示,W5500使用硬件SPI與微控制器進行通信,由CS、SCK、MOSI和MISO4路信號構成,W5500工作于從機模式。電路使用低溫漂25M晶振為W5500提供時鐘,使用磁珠FBMA-11-201209-601A20T進行數字信號與模擬信號的隔離。W5500使用TXN/TXP和RXN/RXP2路差分信號與以太網接口電路通信。
2.5 以太網接口電路
以太網接口電路如圖7所示,其接口采用內部自帶網絡變壓器的RJ46接口HR91105A,TXN/TXP差分對與HR91105A的1腳和2腳相連接,RXN/RXP差分對與HR91105A的3腳和6腳相連接,4腳和5腳為網絡變壓器的中心抽頭,9腳和10腳為綠色指示燈,11腳和12腳為綠色指示燈。
參考文獻:
[1]NIE Zhou.The impact of communication technologies on social structure-take the example of smart city[J].Journal of Shanxi University of Finance and Economics,2016(s2):137-144.
[2]張皓.計算機物聯網技術應用及發展研究[J].電子技術與軟件工程,2016(22):10.
[3]智能電網用戶端電力監控/電能管理/電氣安全(產品報價手冊).2023.01版
[4]企業微電網設計與應用手冊.2022.05版.
|